Medicine and life sciences take 3D to heart

Medicine & Life Sciences. The easiest way to understand how 3D printing is transforming the fields of medicine and life sciences is to look at a list of actual applications of the technology from publication 3D Printing Industry. In case you are not up to date on your knowledge of man-made body parts, here are some applications to consider:

  • Tissues with blood vessels. Jennifer Lewis, a researcher at Harvard University, has designed a custom 3D printer to create tissue containing skin cells that are interlaced with artificial blood vessels.
  • Low-cost prosthetics. A research team from the University of Toronto is producing inexpensive and easy to customize prosthetic sockets for patients in Uganda. “Not Impossible Labs” in Venice, Calif. is creating easy-to-print, patient-specific limbs for people in Sudan.
  • Pharmaceuticals. Researchers at the Louisiana Technical University have printed biocompatible, biodegradable devices for delivering bone cancer medicines. Lee Cronin, a chemist at the University of Glasgow, is experimenting with a 3D printer capable of creating chemical compounds at the molecular level that ultimately would allow patients to download their prescription blueprint and print their medications at home.
  • Patient-specific sensors. Researchers at Washington University in St. Louis have printed electronic sensors on silicon sheets that can be attached to the human heart to measure oxygenation, heart strain and temperature. They are working on extending the sensor technology to detect blocked arteries.
  • Medical models. Researchers are creating 3D printed models based upon CT and MRI scans to make patient-specific implants and to better understand how tumors grow and spread.  Such models additionally allow doctors to better prepare for surgeries and significantly reduce procedure times.
  • Bone. Professor Susmita Bose of Washington State University customized a 3D printer to create an artificial bone grafting material that will also promote and eventually be replaced by natural bone growth.
  • Heart valve. Dr. Jonathan Butcher at Cornell University has printed a functioning heart valve that he plans to start testing on sheep.
  • Ear and spinal cartilage. Researchers at Cornell have created molds of ear tissue from 3D patient photos that are filled with bovine cartilage cells to form living ear tissue that is reattached to the patient. They have also 3D printed replacement discs to treat major spinal column injuries.
  • Cranium replacement. Surgeons at the University Medical Center in Utrecht, Netherlands replaced the top portion of a woman’s skull with a precisely fitted implant that was 3D printed from plastic. Titanium has also been used for skull fragment replacement in Slovakia and China.
  • Synthetic skin. James Yoo, M.D., at the Wake Forest School of Medicine has customized a 3D printer that can print skin straight onto wounds of burn victims based upon a scan of the damaged tissue. The process is accurate down to the number of layers of skin originally damaged and in need of replacement.
  • Organs. Organovo has announced the launch of bio-printed liver cells. For the moment, the cells only live for 40 days and are mainly used for testing new drugs. Executives predict that within the next 10 years they will be printing fully functional livers, hearts and kidneys.

CLICK HERE to read the full article